<track id="rtvvt"><strike id="rtvvt"><strike id="rtvvt"></strike></strike></track>
<address id="rtvvt"></address>

            <address id="rtvvt"><ruby id="rtvvt"><ol id="rtvvt"></ol></ruby></address>
            <noframes id="rtvvt"><pre id="rtvvt"><span id="rtvvt"></span></pre>

            <address id="rtvvt"><pre id="rtvvt"></pre></address>

            歡迎訪問鄭州新世紀材料基因組工程研究院!

            郵箱登錄

            中文

            English

            Copyright?2018 鄭州新世紀材料基因組工程研究院  豫ICP備18030750號-1                                                                                                                                網站建設:中企動力  鄭州

             

            掃一掃查看
            手機網站

            >
            科學研究
            瀏覽量:

            計算 + 實驗 + 數據

             

            國家安全

            材料從發現、制造到應用的速度提高一倍,成本降低一半

             

            定向設計新材料、發展最佳工藝、大幅度縮短研發時間!

             

             

            MGI主旨

             
             
             

            To provide rational design strategies to guide experimental synthesize.

            To predict novel materials with desired properties.

            ----Shorten trial and error in the laboratory.

            產業驅動:材料基因組工程(MGI)計劃的目的及創新核心

             

            清潔能源

            人民福祉

            未來發展

             

            創新核心

            高通量計算

            大數據

            高可靠性分析

            高通量精準實驗

            2017-2020年材料基因組工程論文發表

            2020年

            1.Theoretical formulation of Li3a+bNaXb (X= Halogen) as potential artificial solid electrolyte interphases (ASEI) to protect Li anode. Phys. Chem. Chem. Phys., 2020, 22, 12918-12928

            2.Theoretical Identification of Layered MXene Phase NaxTi4C2O4 as Superb Anodes for Rechargeable Sodium-ion Batteries. J. Mater. Chem. A, 2020, 8, 11177-11187.

             

            2019年

            1.First principles study for band engineering of KNbO3 with 3d transition metal substitution. RSC Adv., 2019, 9, 7551–7559.

            2.Theoretical formulation of Na3AO4X (A=S/Se, X=F/Cl) as Highperformance Solid Electrolytes for All-Solid-State Sodium Batteries. J. Mater. Chem. A, 2019,7, 21985-21996.

            3.Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries. J. Mater. Chem. A, 2018, 6, 19843-19852.

            4.A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl halichalcogenides. J. Mater. Chem. A, 2019, 7, 5239-5247

             

            2018年

            1.High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS2: a computational study. J. Mater. Chem. A, 2018, 6, 6830-6839.

            2.Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. Journal of Non-Crystalline Solids 2018, 48, 772–786.

            3. High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS2: a computational study. J. Mater. Chem. A, 2018, 6, 6830-6839.

            4.Theoretical design of double anti-perovskite Na6SOI2 as super-fast ionic conductor for solid Na+ ion batteries. J. Mater. Chem. A, 2018, 6, 19843-19852.

             

            2017年

            1.Simulation of planar Si/Mg2Si/Si p-i-n heterojunction solar cells for high efficiency. Solar Energy 2017 158, 654–662.

            2.Theoretical design of solid electrolytes with superb ionic conductivity: alloying effect on Li+ transportation in cubic Li6PA5X chalcogenides. J. Mater. Chem. A, 2017, 5, 21846.

            3.From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen–chalcogenides. J. Mater. Chem. A, 2018, 6, 73.

             

             

             

             

             

             

            欧美性交另类
            <track id="rtvvt"><strike id="rtvvt"><strike id="rtvvt"></strike></strike></track>
            <address id="rtvvt"></address>

                      <address id="rtvvt"><ruby id="rtvvt"><ol id="rtvvt"></ol></ruby></address>
                      <noframes id="rtvvt"><pre id="rtvvt"><span id="rtvvt"></span></pre>

                      <address id="rtvvt"><pre id="rtvvt"></pre></address>